´ºÓêÖ±²¥app

PRESS RELEASES

Print

Cell size regulates molecular separation New research shows greater separation of molecules in smaller-sized artificial cells Research news

August 25, 2022

Illustration of changes due to cell size, identified by green and red colors, in a test tube.

Illustrated separation of the two polymers. Aqueous solution of two polymers (red and green) in a test tube and in artificial cells of different sizes. In the test tube, the solution is homogeneously mixed, but in the small artificial cell, the solution separates into two phases. ©2022 Yanagisawa et al.

New research shows that cell size and membranes may play a key role in regulating the distribution of molecules inside cells. This discovery offers a new unconventional method for manipulating artificial cells via their size and interfacial properties, or their boundaries, instead of through molecular modification of their chemical structure. This could aid multiple industries, from cosmetics to pharmaceuticals, which want to avoid unexpected changes to the properties of artificial cells in their products, such as when creating new medicines like vaccines.

Artificial cells can be little lifesavers, such as the COVID-19 mRNA vaccine. These engineered wonders can be made to mimic the functions of biological cells and perform all sorts of tasks, from “teaching” our own cells how to respond to a virus, growing artificial skin for testing cosmetics, or making food preservatives.

However, creating and manipulating these cells comes with many challenges. &ld